Study of excited states of ³⁵Ar through β-decay of ³⁵K for nucleosynthesis in novae and X-ray bursts

A. Saastamoinen, G.J. Lotay,¹ A. Kankainen,² B.T. Roeder, R. Chyzh, M. Dag, E. Simmons, A. Spiridon, and R.E. Tribble

¹Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom ²School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom

The thermonuclear runaway in close binary systems such as novae and X-ray bursts proceeds through proton-rich nuclei and many of the radiative proton capture reactions (p,γ) involving sd-shell nuclei close to the drip-line are dominated by resonant capture. The key parameters in understanding the astrophysical reaction rates are the energies, decay widths and spins of these resonances. One of the reactions for which improved data are needed and which determines the synthesis of nuclei beyond sulfur and chlorine is the radiative proton capture ³⁴Cl(p, γ)³⁵K. At the moment the properties of the excited states of ³⁵Ar above the proton separation threshold are rather poorly known and the astrophysical reaction rate is based on statistical Hauser-Feshbach calculations.

In a recent experiment we have studied the excited states of ³⁵Ar selectively through the β -decay of the 3/2+ ground state of ³⁵K. A beam of ³⁵K was made at the Cyclotron Institute in inverse kinematics through reaction ¹H(³⁶Ar,³⁵K)2n by bombarding LN₂ cooled H₂ gas cell with 36-MeV/u ³⁶Ar beam. The reaction products were separated by using the Momentum Achromat Recoil Spectrometer (MARS), resulting a 70% pure beam as shown in Fig 1. The beam was

FIG. 1. Particle ID of the separated ³⁵K beam.

implanted into the Si implantation setup [1], consisting of a stack of Si detectors accompanied by two 70% HPGe detectors. This setup allows measuring β -delayed protons and γ -rays simultaneously, including coincidences. The setup was calibrated with standard offline sources and with ³²Cl and ³⁶K beams produced with the same primary beam.

FIG. 2. Beta-delayed particles from 35 K decay. Inset shows previously known data (taken from from [2]).

In this experiment, we observed several new proton groups as shown in Fig. 2, first direct observation of the Isobaric Analogue State of 35 K ground state in 35 Ar in β -decay and determined an improved half-life of 35 K. The analysis of the data is in progress.

M. McCleskey *et al.*, Nucl. Instrum. Methods Phys. Res. A700, 124 (2013).
G.T. Ewan *et al.*, Nucl. Phys. A343, 109 (1980).